BOAT-CHAIR CONFORMATIONAL PREFERENCE OF EXO,EXO-9-OXOBICYCLO (3.3.1) NONANE-2,4-DICARBOXYLIC ACID

1. Camps* and C. Iglesias

Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia,

Av. Blasco Ibañcz 13, 46010-Valencia, Spain

Abstract. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} n \mathrm{~nm}$ spectra of exo, exo-9-oxobicyclo (3.3.1) nonane-2,4-dicarboxylic acid, 3 , in DMSO- $a_{6}$ or alkaline $D_{2} 0$, clearly show that it exists in a boat-chair-conformation with equatorial carboxyl groups, thus being the first case of boat-chair preference of a bicyclo (3.3.1) nonan-9-one due to the presence of exo, exo-2,4-substituents.

The conformational analysis of bicyclo (3.3.1) nonane derivatives is a matter of continuing interest. ${ }^{1}$ Bicyclo (3.3.1) nonane and bicyclo (3.3.1) nonan-9-one exist in a flattened chair-chair conformation due to the non-bonded $\mathrm{H}_{3 \text { endo }}{ }^{-\mathrm{H}} 7$ endo interaction, in rapid equilibrium with the less stable boat-chair conformation. While introduction of an endo substituent at $C_{3}$ shifts the equilibrium entirely towards the boat-chair-conformation, ${ }^{1 c}$ the effect of exo-substituents at $C_{2}$ and $C_{4}$ is not so drastic. In a recent publication ${ }^{1 b}$ we have described that exo, exo- $2,4-$ dimethoxybicyclo [3.3.1] nonan-9-one, 1, in $\mathrm{CDCl}_{3}$ solution, adopts preferently a chair-chair conformation with axial methoxy groups as shown by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} n \mathrm{nr}$ spectroscopy. More recently, Baker and Frazer ${ }^{2}$ have also shown a chair-chair conformational preference for exo-2-acetoxy4 (exo), 5-dimethylbicyclo $(3.3 .1)$ nonan-9-one, 2 .

We describe herein that exo, exo-9-oxobicyclo [3.3.1] nonane-2,4-dicarboxylic acid, ${ }^{3}$ 3, prepared in a straightforward manner by $\mathrm{KMnO}_{4}$ oxidation of anti-tricyclo $\left[4.3 .1 .1^{2,5}\right.$ ]undec-3-en10 -one, ${ }^{4}$ under phase transfer catalysis conditions, ${ }^{5}$ exists almost cxclusivcly in the boatchair conformation, in DMSO- $_{6}$ or alkaline $D_{2}$ o solution.

1, $\mathrm{R}=\mathrm{R}^{\prime}=$ OMe, $\mathrm{R}^{\prime \prime}=\mathrm{H}$
2, $R=O A C, R^{\prime}=R^{\prime \prime}=M e$
$\underline{3} R=R^{\prime}=\mathrm{COOH}, \mathrm{R}^{\prime \prime}=\mathrm{H}$


The $200 \mathrm{MHz}{ }^{1}{ }_{\mathrm{H}} \mathrm{nmr}$ spectrum of diacid 3 in DMSO- $\alpha_{6}$ showed: a double triplet centered at $\delta$ 2.96 assigned to $H_{2}\left(\mathrm{H}_{4}\right)$ with coupling constants $J_{\mathrm{H} 2-\mathrm{H} 3 \text { exo }}=13.0 \mathrm{~Hz}$ and $J_{\mathrm{H} 2-\mathrm{H} 3 \text { endo }}=J_{\mathrm{H} 2-\mathrm{H} 1}=$ 4.3 Hz , a broad singlet at $\delta 2.57$ assigned to $H_{1}\left(H_{5}\right)$, a double triplet at $\delta 2.17$ assigned to $H_{\text {3endo }}$ with $J_{H 3 \text { endo-H3exo }}=13.0 \mathrm{~Hz}$ and $J_{H 3 e n d o-H 2(4)}=4.3 \mathrm{~Hz}$, a quartet at $\delta 1.23$ assigned to $\bar{H}_{\text {3exo }}$ with $J_{\text {H3exo-H3endo }}=J_{\text {H3exo- }} 2(4)=13.0 \mathrm{~Hz}$, the rest of the protons appearing as a complex absorption at $\delta \overline{1.4}-2.0$. On irradiation at $\delta 2.96$, the absorptions corresponding to
$\mathrm{H}_{3 \text { exo }}$ and $\mathrm{H}_{3 \text { 3endo }}$ became doublets, and on irradiation at $\delta 2.57$, the absorption corresponding to $\mathrm{H}_{2}\left(\mathrm{H}_{4}\right)$ became a double doublet while those corresponding to $\mathrm{H}_{3 \text { exo }}$ and $\mathrm{H}_{3 \text { endo }}$ remained unchanged. The high value of $\mathrm{J}_{\mathrm{H} 3 \text { exO- }} \mathrm{H}^{(\mathrm{II} 4)}$ is indicative of a trans-diaxial relationship between $\mathrm{H}_{3 \text { exo }}$ and $\mathrm{H}_{2}\left(\mathrm{H}_{4}\right)$, that can be only attained in the boat-chair conformation of 3 . By contrast, the corresponding value for compound $\underline{1}$ is 3.90 Hz . Two other features are worth mentioning: a) the upfield shift of $H_{3 e x 0}$ in $\underline{3}$ ( 1.23 ppm ) with respect to $\underline{1}(2.10 \mathrm{ppm})$, and b) the absence of a $W$ coupling between $\mathrm{H}_{1} \overline{\left(\mathrm{H}_{5}\right)}$ and $\mathrm{H}_{3 \text { exo }}$ in 3 , a type of coupling that was observed in 1 . Both features confirm the boat-chair conformational preference of diacid 3 , since in this conformation $H_{3 e x o}$ is very close to the $\pi$ cloud of the ketonic function, ${ }^{6}$ and neither $H_{3 e x o}$ nor $H_{3 \text { endo }}$ can $W$ couple with $\mathrm{H}_{1}\left(\mathrm{H}_{5}\right)$.

This was additionally supported by the ${ }^{13} \mathrm{C}$ nmr spectrum ${ }^{3}$ in DMSO- $\mathrm{d}_{6}$, since the chemical shift for the $\mathrm{sp}^{3}$ carbon atoms of 3 are in good agreenent with those predicted taking the average values for boat-chair-bicyclo (3.3.1) nonan-9-one ${ }^{7}$ and correcting them for the presence of equatorial carboxyl groups at. $C_{2}$ and $C_{4}$. Specially significative is the shielding of $c_{7}$ ( $\delta 15.7 \mathrm{ppm}$ ) for which a value of 15.7 ppm is predicted in the boat-chair conformation vs 21.0 ppm in the chair-chair one.

Similar conclusions can be drawn from the $200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{nmr}$ spectrum of compound 3 in alkaline (NaOD) $\mathrm{D}_{2} \mathrm{O}$ which is fully comparable ${ }^{3}$ to the corresponding spectrum in DMSO- $\mathrm{d}_{6}$. Thus, the sodium salt of 3 also exists preferently in boat-chair conformation in $D_{2} O$ solution.

This is the first case of a boat-chair conformational preference of a bicyclo (3.3.1) nonan-g-one due to the presence of exo-substituents at $C_{2}$ and $C_{4}$. Work is in progress to prepare related compounds in which both the chair-chair and the boat-chair conformations are nearly equally populated.

## ACKNOWLEDGEMENTS

We gratefully thank Dr. M. Feliz and Dr. I. Solana for running the spectra.

## REFERENCES AND NOTES

1. a) G. Aranda, J.M. Bernassau, M. Fetizon, and I. Hanna, J. Org. Chem., 50, 1156(1985) and references therein cited; b) C. Jaime, E. Osawa, Y. Takeuchi, and P. Camps, J. Org. Chem. 48, $4514(1983)$ and references therein cited; c) J.A. Peters, G.W.M. van Ballegoyen-Eekhout, B. van der Graaf, W.M.M.J. Bovée, J.M.A. Baas, and H. van Bekkum, Tetrahedron, 39, 1649 (1983) and references therein cited.
2. A.J. Baker and D.V. Frazer, J. Chem. Soc. Chem. Comm., 290(1985).
3. Analytical_and spectroscopic data of compound 3: M.p. 209-2110C; $\operatorname{Ir}(\mathrm{KBr}) \mathrm{V} 3400-2400(\mathrm{~s})$, $1700(\mathrm{~s}) \mathrm{cm}^{-1} ; 200 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{nmr}(\mathrm{D}, \mathrm{O} / \mathrm{NaOD}) \delta 0.97(\overline{\mathrm{c}}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.04-1.80$ (complex absorption, 6 H$), 1.83\left(\mathrm{dt}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~J}^{\prime}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.38($ broad $\mathrm{s}, 2 \mathrm{H}), 2.60(\mathrm{dt}, \mathrm{J}=13.5 \mathrm{~Hz}$, $\left.\mathrm{J}^{\prime}-4.0 \mathrm{~Hz}, 2 \mathrm{H}\right) ; 50 \mathrm{MHz}{ }^{13} \mathrm{C}$ п $\mathrm{HII}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 15.7(\mathrm{C} 7), 26.8(\mathrm{C} 3), 34.8(\mathrm{C} 6(\mathrm{CB})), 43.7(\mathrm{C} 1(\mathrm{C} 5))$, 47.1(C2(C4)), $174.8(-\mathrm{COOH}), 215.3(\mathrm{C} 9)$; Anal. calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{5}$ : C $58.40, \mathrm{H} 6.24$; found: C 58.42 , н 6.07\%.
4. G.M. Ramos Tombo, R.A. Pfund, and C. Ganter, Helv. Chim. Acta, 64, 813(1981).
5. A.P. Krapcho, J.R. Larson, and J.M. Eldridge, J. Org. Chem., 42, 3749(1977).
6. L.M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed., Pergamon Press, 1969, p. 88.
7. J.A. Peters, J.M. van der Toorn, and H. van Bekkum, Tetrahedron, 33, 349(1977).
(Received in UK 23 July 1985)
