BOAT-CHAIR CONFORMATIONAL PREFERENCE OF EXO, EXO, 9-0XOBICYCLO [3.3.1] NONANE-2, 4-DICARBOXYLIC ACID

P. Camps* and C. Iglesias

Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Av. Blasco Ibañez 13, 46010-Valencia, Spain

Abstract. The ¹H and ¹³C nmr spectra of exo, exo-9-oxobicyclo (3.3.1) nonane-2,4-dicarboxylic acid, <u>3</u>, in DMSO-d₆ or alkaline D₂O, clearly show that it exists in a <u>boat-chair</u>-conformation with <u>equatorial</u> carboxyl groups, thus being the first case of <u>boat-chair</u> preference of a bicyclo (3.3.1) nonan-9-one due to the presence of <u>exo</u>, exo-2,4-substituents.

The conformational analysis of bicyclo [3,3,1] nonane derivatives is a matter of continuing interest.¹ Bicyclo (3.3,1) nonane and bicyclo (3.3,1) nonan-9-one exist in a flattened <u>chair-chair</u> conformation due to the non-bonded H_{3endo}-H_{7endo} interaction, in rapid equilibrium with the less stable <u>boat-chair</u> conformation. While introduction of an <u>endo</u> substituent at C₃ shifts the equilibrium entirely towards the <u>boat-chair</u>-conformation, ^{1c} the effect of <u>exo-</u>substituents at C₂ and C₄ is not so drastic. In a recent publication^{1b} we have described that <u>exo, exo-</u>2,4dimethoxybicyclo [3.3.1] nonan-9-one, <u>1</u>, in CDCl₃ solution, adopts preferently a <u>chair-chair</u> conformation with axial methoxy groups as shown by ¹H and ¹³C nmr spectroscopy. More recently, Baker and Frazer² have also shown a <u>chair-chair</u> conformational preference for <u>exo-</u>2-acetoxy-4(<u>exo</u>), 5-dimethylbicyclo [3.3.1] nonan-9-one, <u>2</u>.

We describe herein that $\underline{exo}, \underline{exo}$ -9-oxobicyclo [3.3.1] nonane-2,4-dicarboxylic acid, $\frac{3}{2}$, prepared in a straightforward manner by KMnO₄ oxidation of <u>anti</u>-tricyclo $[4.3.1.1^{2,5}]$ undec-3-en-10-one, $\frac{4}{4}$ under phase transfer catalysis conditions, $\frac{5}{2}$ exists almost exclusively in the <u>boat</u>chair conformation, in DMSO-d₆ or alkaline D₂O solution.

<u>1</u>, $R = R^{1} = OMe$, $R^{"} = H$ <u>2</u>, R = OAc, $R^{1} = R^{"} = Me$ <u>3</u> $R = R^{1} = COOH$, $R^{"} = H$

The 200 MHz ¹H nmr spectrum of diacid <u>3</u> in DMSO-d₆ showed: a double triplet centered at δ 2.96 assigned to H₂(H₄) with coupling constants J_{H2-H3exo} = 13.0 Hz and J_{H2-H3endo} = J_{H2-H1} = 4.3 Hz, a broad singlet at δ 2.57 assigned to H₁(H₅), a double triplet at δ 2.17 assigned to H <u>3endo</u> with J_{H3endo-H3exo} = 13.0 Hz and J_{H3endo-H2(4)} = 4.3 Hz, a quartet at δ 1.23 assigned to H_{3exo} with J_{H3exo-H3endo} = J_{H3exo-H2(4)} = 13.0 Hz, the rest of the protons appearing as a complex absorption at δ 1.4-2.0. On irradiation at δ 2.96, the absorptions corresponding to 5464

 $H_{3 \underline{exo}}$ and $H_{3 \underline{endo}}$ became doublets, and on irradiation at δ 2.57, the absorption corresponding to $H_2(H_4)$ became a double doublet while those corresponding to $H_{3\underline{exo}}$ and $H_{3\underline{endo}}$ remained unchanged. The high value of $J_{H3\underline{exo}-H2(H4)}$ is indicative of a <u>trans-diaxial</u> relationship between $H_{3\underline{exo}}$ and $H_2(H_4)$, that can be only attained in the <u>boat-chair</u> conformation of <u>3</u>. By contrast, the corresponding value for compound <u>1</u> is 3.90 Hz. Two other features are worth mentioning: a) the upfield shift of $H_{3\underline{exo}}$ in <u>3</u> (1.23 ppm) with respect to <u>1</u> (2.10 ppm), and b) the absence of a W coupling between $H_1(H_5)$ and $H_{3\underline{exo}}$ in <u>3</u>, a type of coupling that was observed in <u>1</u>. Both features confirm the <u>boat-chair</u> conformational preference of diacid <u>3</u>, since in this conformation $H_{3\underline{exo}}$ is very close to the π cloud of the ketonic function, ⁶ and neither $H_{3\underline{exo}}$ nor $H_{3\underline{endo}}$ can W couple with $H_1(H_5)$.

This was additionally supported by the ¹³C nmr spectrum³ in DMSO-d₆, since the chemical shift for the sp³ carbon atoms of <u>3</u> are in good agreement with those predicted taking the average values for <u>boat-chair</u>-bicyclo (3.3.1) nonan-9-one⁷ and correcting them for the presence of <u>equatorial</u> carboxyl groups at C₂ and C₄. Specially significative is the shielding of C₇ (δ 15.7 ppm) for which a value of 15.7 ppm is predicted in the <u>boat-chair</u> conformation vs 21.0 ppm in the <u>chair-chair</u> one.

Similar conclusions can be drawn from the 200 MHz 1 H nmr spectrum of compound <u>3</u> in alkaline (NaOD) D₂O which is fully comparable³ to the corresponding spectrum in DMSO-d₆. Thus, the sodium salt of <u>3</u> also exists preferently in <u>boat-chair</u> conformation in D₂O solution.

This is the first case of a <u>boat-chair</u> conformational preference of a bicyclo 3.3.1 nonan-9-one due to the presence of <u>exo</u>-substituents at C₂ and C₄. Work is in progress to prepare related compounds in which both the <u>chair-chair</u> and the <u>boat-chair</u> conformations are nearly equally populated.

ACKNOWLEDGEMENTS

We gratefully thank Dr. M. Feliz and Dr. I. Solana for running the spectra.

REFERENCES AND NOTES

- a) G. Aranda, J.M. Bernassau, M. Fetizon, and I. Hanna, J. Org. Chem., 50, 1156(1985) and references therein cited; b) C. Jaime, E. Osawa, Y. Takeuchi, and P. Camps, J. Org. Chem., 48, 4514(1983) and references therein cited; c) J.A. Peters, G.W.M. van Ballegoyen-Eekhout, B. van der Graaf, W.M.M.J. Bovée, J.M.A. Baas, and H. van Bekkum, <u>Tetrahedron</u>, 39, 1649 (1983) and references therein cited.
- 2. A.J. Baker and D.V. Frazer, J. Chem. Soc. Chem. Comm., 290(1985).
- 3. Analytical and spectroscopic data of compound 3: M.p. 209-2119C; Ir(KBr) v 3400-2400(s), 1700(s) cm⁻¹; 200 MHz [']H nmr(D₂O/NaOD) & 0.97(c, J = 13.5 Hz, 1H), 1.04-1.80(complex absorption, 6H), 1.83(dt, J = 13.5 HZ, J' = 4.0 Hz, 1H), 2.38(broad s, 2H), 2.60(dt, J = 13.5 HZ, J' = 4.0 Hz, 2H); 50 MHz ¹³C nmr(DMSO-d₆) & 15.7(C7), 26.8(C3), 34.8(C6(C8)), 43.7(C1(C5)), 47.1(C2(C4)), 174.8(-COOH), 215.3(C9); <u>Anal</u>. calcd. for C₁₁H₁₄O₅: C 58.40, H 6.24; found: C 58.42, H 6.07%.
- 4. G.M. Ramos Tombo, R.A. Pfund, and C. Ganter, Helv. Chim. Acta, 64, 813(1981).
- 5. A.P. Krapcho, J.R. Larson, and J.M. Eldridge, J. Org. Chem., 42, 3749(1977).
- L.M. Jackman and S. Sternhell, "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd ed., Pergamon Press, 1969, p.88.
- 7. J.A. Peters, J.M. van der Toorn, and H. van Bekkum, Tetrahedron, 33, 349(1977).

(Received in UK 23 July 1985)